Abstract

Plug-in hybrid electric vehicles (PHEVs) offer the potential to significantly reduce greenhouse gas emissions, if vehicle consumers are willing to adopt this new technology. Consequently, there is much interest in exploring PHEV market penetration models. In prior work, we developed an agent-based model (ABM) of potential PHEV consumer adoption that incorporated several spatial, social, and media influences to identify nonlinear interactions among potential leverage points that may impact PHEV market penetration. In developing that model, the need for additional data to properly inform both the decision-making rules and agent initialization became apparent. To address these issues, we recently conducted and analyzed an extensive consumer survey; in this paper, we modify the ABM to reflect the survey findings. A unique aspect is a one-to-one correspondence between agents in the model and survey respondents, and thus yielding distributions and cross correlations in agent attributes that accurately reflect the survey population. We also implement a used-PHEV market, and allow agents to purchase new or used compact PHEVs or vehicles of their current type. Based on our prior survey response analysis, our modified model includes a PHEV-technology threshold component, a multinomial logistic prediction of willingness to consider a compact PHEV based on dynamically changing attitudes, and agent-specific delay discounting functions that predict the amount agents are willing to pay up front for greater fuel savings. We thus independently account for agents’ discomfort with the new PHEV technology, their desire to drive a more environmentally friendly vehicle, and their willingness to pay a higher sticker price for a PHEV. Results of ten survey-based ABM scenarios are reported with implications for policy-makers and manufacturers. We believe close integration of the design of consumer surveys and the development of ABMs is a key step in developing useful decision-support models; this paper serves as an example of one way to achieve that.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.