Abstract

Exposure to toxins through contaminated food is a serious concern. For the detection of toxins in complex matrices, there are many analytical instrumentation-based methods; however, these approaches are generally expensive, laborious to perform, and require skilled technicians. Thus, they can only be utilized in centralized laboratories. To efficiently prevent the contamination by toxins and improve food safety, the use of on-site toxin detection methods enabling simple, rapid, sensitive, specific, reliable, and affordable identification of toxins is required. A colorimetric toxin detection strategy providing a naked-eye readout platform suits these requirements. Notably, the implementation of nanomaterials in the colorimetric strategy has proven to rapidly generate a higher capacity for detectable color responses owing to their unique physicochemical and catalytic properties. In this review, recent research on colorimetric toxin detection utilizing diverse nanostructures including noble metal nanoparticles and enzyme-like catalytic nanomaterials (nanozymes) is reviewed and discussed. Current challenges and future prospects for the utilization of nanomaterials in colorimetric toxin detection are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.