Abstract
Wash water, municipal solid waste incineration (MSWI) fly ash, and propylene (PP) fibers were employed simultaneously to produce self-compacting repair mortar (SCRM). Different SCRM mixtures were utilized, incorporating 35, 70, and 140 kg/m3 of MSWI fly ash, along with 0.1% of PP fibers. The research focused on investigating the workability, mechanical properties, and global warming potential (GWP) of SCRM. The incorporation of MSWI fly ash and wash water in SCRM resulted in reduced workability, necessitating an increase in the use of superplasticizer. Adding MSWI fly ash decreases compressive strength. The minimum compressive strength was observed when employing 140 kg/m3 of MSWI fly ash and wash water instead of tap water simultaneously. By increasing the proportion of MSWI fly ash content and correspondingly reducing the cement content in SCRM samples, there was a decrease in flexural strength. The ultrasonic pulse velocity (UPV) of all SCRM samples falls within acceptable range. Adding MSWI fly ash to SCRM reduces fracture toughness, and the concurrent use of wash water and MSWI fly ash significantly decreases fracture toughness. Incorporating PP fibers into SCRM resulted in increased compressive strength. Utilizing wash water and MSWI fly ash in SCRM significantly reduces GWP. The avoidance of wash water consumption mitigates the environmental impact of SCRM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Concrete Structures and Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.