Abstract

Detecting heavy metals in seawater is challenging due to the high salinity and complex composition, which cause strong interference. To address this issue, we propose using a multistage energy barrier as an electrochemical driver to generate electrochemical responses that can resist interference. The Ni-based heterojunction foams with different types of barriers were fabricated to detect Cr(VI), and the effects of the energy barriers on the electrochemical response were studied. The single-stage barrier can effectively drive the electrochemical response, and the multistage barrier is even more powerful in improving sensing performance. A prototype Ni/NiO/CeO2/Au/PANI foam with multistage barriers achieved a high sensitivity and recovery rate (93.63-104.79%) in detecting seawater while resisting interference. The use of multistage barriers as a driver to resist electrochemical interference is a promising approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call