Abstract

ABSTRACT Drones are revolutionising earth system observations, and are increasingly used for high resolution monitoring of water quality. The objective of this research was to test whether drone-based multispectral imagery could predict important water quality parameters in an ICOLL (intermittently closed and opened lake or lagoon). Three water quality sampling campaigns were undertaken, measuring temperature, salinity, pH, dissolved oxygen (DO), chlorophyll (CHL), turbidity, total suspended sediments (TSS), coloured dissolved organic matter (CDOM), green algae, crytophyta, diatoms, bluegreen algae and total algal concentrations. DistilM statistical analyses were conducted to reveal the bands accounting for the most variation across all water quality data, then linear correlations between specific band/band ratios and individual water quality parameters were performed. DistilM analyses revealed the NIR band accounted for most variation in March, the Green band in April and the RE band in May, and showed that the most important contributors varied significantly among campaigns and variables. Significant linear correlations with R 2 > 0.4 were obtained for eleven of the water quality parameters tested, with the strongest correlation obtained for CHL and the green band (R 2 = 0.72). The relative importance of predictor bands and observed water quality parameters varied temporally. We conclude that drones with a multispectral sensor can produce useful ‘snapshot’ prediction maps for a range of water quality parameters, such as chlorophyll, bluegreen algae and dissolved oxygen. However, a single model was insufficient to reproduce the temporal variation of water parameters in dynamic estuarine systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.