Abstract
PurposeThe purpose of this paper is to classify Chinese word semantic relations, which are synonyms, antonyms, hyponyms and meronymys.Design/methodology/approachBasically, four simple methods are applied, ontology-based, dictionary-based, pattern-based and morpho-syntactic method. The authors make good use of search engine to build lexical and semantic resources for dictionary-based and pattern-based methods. To improve classification performance with more external resources, they also classify the given word pairs in Chinese and in English at the same time by using machine translation.FindingsExperimental results show that the approach achieved an average F1 score of 50.87 per cent, an average accuracy of 70.36 per cent and an average recall of 40.05 per cent over all classification tasks. Synonym and antonym classification achieved high accuracy, i.e. above 90 per cent. Moreover, dictionary-based and pattern-based approaches work effectively on final data set.Originality/valueFor many natural language processing (NLP) tasks, the step of distinguishing word semantic relation can help to improve system performance, such as information extraction and knowledge graph generation. Currently, common methods for this task rely on large corpora for training or dictionaries and thesauri for inference, where limitation lies in freely data access and keeping built lexical resources up-date. This paper builds a primary system for classifying Chinese word semantic relations by seeking new ways to obtain the external resources efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.