Abstract

AbstractSeveral classes of multiple‐mode rheological constitutive equations are examined for predicting the viscoelastic flow properties of a typical polymer melt in single and double step‐strain flows. The phenomenological parameters appearing in these models have been obtained by the fitting of experimental data taken in small‐amplitude oscillatory shear and steady shear flows. The performance of the models for predicting the experimental data in the step‐strain experiments is examined in detail. Specifically, we examine whether or not mode coupling is necessary to describe the experimental behavior under step‐strain flows. Furthermore, it is demonstrated that the reversing double step‐strain experiment is a very powerful tool for testing viscoelastic constitutive equations. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.