Abstract

Energy is a very scarce resource in Wireless Sensor Networks. While most of the current proposals focus on minimizing the global energy consumption, we aim here at designing an energy-balancing routing protocol that maximizes the lifetime of the most constraint nodes. To improve the network lifetime, each node should consume the same (minimal) quantity of energy. We propose the Expected Lifetime metric, denoting the residual time of a node (time until the node will run out of energy). We design mechanisms to detect energy-bottleneck nodes and to spread the traffic load uniformly among them. Moreover, we apply this metric to RPL, the de facto routing standard in low-power and lossy networks. In order to avoid instabilities in the network and problems of convergence, we propose here a multipath approach. We exploit the Directed Acyclic Graph (DAG) structure of the routing topology to probabilistically forward the traffic to several parents. Simulations highlight that we improve both the routing reliability and the network lifetime, while reducing the number of DAG reconfigurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.