Abstract
Classification learning is a very complex process whose success and failure ratio depends on a high amount of elements. One of them is the representation mean used for the data that is employed in the process. Granularity of the data used for classification learning purposes can affect dramatically the success and failure ratio of the obtained classification. In this paper, multi-granular fuzzy linguistic modelling methods are applied over the classification learning data in order to modify their granularity and increase the classification success ratio. Thanks to multi-granular fuzzy linguistic modelling methods, it is possible to automatically modify the data granularity in order to determine which data representation is the one that provides the better classification results in the learning process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.