Abstract

We present three different mixed integer linear models with a polynomial number of variables and constraints for the Steiner tree problem in graphs. The linear relaxations of these models are compared to show that a good (strong) linear relaxation can be a good approximation for the problem. We present computational results for the STP OR-Library (J.E. Beasley) instances of type b, c, d and e.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.