Abstract
This work demonstrates, for the first time, the potential of using multi-parameter flow cytometry to monitor changes in the microbial cytoplasmic membrane integrity and polarization during microbial fuel cells (MFC) operation. Such information is crucial to follow the dynamics of bacteria colonization of the electrodes and their viability maintenance during electrical current production. Interestingly, the results show that during voltage production, the electrostatic gradients of the bacteria cytoplasmic membrane are disturbed, leading to depolarization of a subpopulation (where less than 40% of the cells were polarized). Once the voltage dropped, due to substrate limitation, several cells in the anode supernatant restored their polarized state. This process was reversible and observed over more than 4 cycles of fresh substrate addition. Similar power outputs induced similar membrane polarization results, regardless of the substrate used. The percentage of non-viable cells was maintained constant during current production. This study opens new opportunities to monitor cell behavior, and thus increase the knowledge of dynamic mechanisms responsible for current production at the individual cell level. This technique could be of great interest for the development of new MFC configurations and optimization of MFC operation conditions toward increased performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.