Abstract

Ulaanbaatar (UB), the capital city of Mongolia, has extremely poor wintertime air quality with fine particulate matter concentrations frequently exceeding 500 μg/m3, over 20 times the daily maximum guideline set by the World Health Organization. Intensive use of sulfur-rich coal for heating and cooking coupled with an atmospheric inversion amplified by the mid-continental Siberian anticyclone drive these high levels of air pollution. Ground-based air quality monitoring in Mongolia is sparse, making use of satellite observations of aerosol optical depth (AOD) instrumental for characterizing air pollution in the region. We harnessed data from the Multi-angle Imaging SpectroRadiometer (MISR) Version 23 (V23) aerosol product, which provides total column AOD and component-particle optical properties for 74 different aerosol mixtures at 4.4 km spatial resolution globally. To test the performance of the V23 product over Mongolia, we compared values of MISR AOD with spatially and temporally matched AOD from the Dalanzadgad AERONET site and find good agreement (correlation r = 0.845, and root-mean-square deviation RMSD = 0.071). Over UB, exploratory principal component analysis indicates that the 74 MISR AOD mixture profiles consisted primarily of small, spherical, non-absorbing aerosols in the wintertime, and contributions from medium and large dust particles in the summertime. Comparing several machine learning methods for relating the 74 MISR mixtures to ground-level pollutants, including particulate matter with aerodynamic diameters smaller than 2.5 μm ( PM 2.5 ) and 10 μm ( PM 10 ), as well as sulfur dioxide ( SO 2 ), a proxy for sulfate particles, we find that Support Vector Machine regression consistently has the highest predictive performance with median test R 2 for PM 2.5 , PM 10 , and SO 2 equal to 0.461, 0.063, and 0.508, respectively. These results indicate that the high-dimensional MISR AOD mixture set can provide reliable predictions of air pollution and can distinguish dominant particle types in the UB region.

Highlights

  • Ulaanbaatar, Mongolia (UB) is the coldest capital city, and has some of the worst air pollution in the world

  • The tradeoff for more data is that the correlation with Aerosol Robotic Network (AERONET) is lower (r = 0.7502 vs. 0.8505), and the root-mean-square deviation (RMSD) is higher (RMSD = 0.0877 vs. 0.0712)

  • The modest under-performance of AOD_raw is further evident in the percentage of retrievals that fall within the expected error (EE) envelopes

Read more

Summary

Introduction

Ulaanbaatar, Mongolia (UB) is the coldest capital city, and has some of the worst air pollution in the world. In a report by the World Bank, it was estimated that up to one third of the mortality in greater UB could be prevented by lowering local ambient air pollution levels to 10 μg/m3, the WHO annual guideline [2]. Three coal-fired power plants within the city limits are an important source of particulates, contributing approximately 27% of the annual PM2.5 emissions [3]. The total population of the country is small (3.2 million), according to the National Statistical Office of Mongolia, nearly half of Mongolians live in the greater capital city area and are affected by extremely high levels of air pollution during the wintertime months (October–March) [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call