Abstract

Mossbauer spectroscopy can be a useful structural tool to assist crystallographic methods for site assignment when the compound under investigation contains divalent tin. The goal of this work was to show that the structure of tin(II) fluoride, also know as stannous fluoride, SnF2, could have been solved 14 years earlier if Mossbauer spectroscopic results, already known, had been used. A first attempt to solve the crystal structure, carried out by Bergerhoff in 1962 seemed to find the tin positions, however, it failed to find the positions of fluorine. Further extensive studies by Denes et al. in the mid 1970s yielded the same results as those of Bergerhoff, despite the use of a Nonius CAD-4 automatic diffractometer, in contrast with Bergerhoff’s film work. The tin positions yielded a residual of 0.23, and Fourier difference maps showed significant electron density that could be fluorine atoms, however, their number did not match the number of fluorine atoms expected and several F-F distances were way too short. In addition, refinement using these possible fluorine positions led to no improvement of the residual factor. Finally, the crystal structure was published by McDonald et al. in 1976. It was found that the tin sublattice determined by Bergerhoff was basically correct, except that half of the tin atoms found by Bergerhoff to be on the (4b) and (4e) special Wyckoff sites were actually on the (8f) general site. A translation of the origin of the unit-cell by the [1/8, 0, 3/16] vector allows to change the tin Wyckoff sites from (4b), (4e) and (8f) to two (8f) sites, while keeping the basic spatial distribution of tin. A method has now been designed, using 119Sn Mossbauer spectroscopy, to test the suitability of some Wyckoff sites for divalent tin, using the Mossbauer spectrum. The tin(II) doublet (δ = 3.430(3) mm/s, Δ = 1.532(3) mm/s) shows that the lone pair is on a hybrid orbital, therefore, it is stereoactive, and it results that tin cannot be on either the (4b) or (4e) tin site since both an inversion center and a 2-fold axis would generate a second lone pair unless the 2-fold axis were along the tin-lone pair axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.