Abstract

A detailed Monte Carlo N-Particle Transport Code (MCNP5) model of the University of Missouri research reactor (MURR) has been developed. The ability of the model to accurately predict isotope production rates was verified by comparing measured and calculated neutron-capture reaction rates for numerous isotopes. In addition to thermal (1/v) monitors, the benchmarking included a number of isotopes whose (n, γ) reaction rates are very sensitive to the epithermal portion of the neutron spectrum. Using the most recent neutron libraries (ENDF/B-VII.0), the model was able to accurately predict the measured reaction rates in all cases. The model was then combined with ORIGEN 2.2, via MONTEBURNS 2.0, to calculate production of 99Mo from fission of low-enriched uranium foils. The model was used to investigate both annular and plate LEU foil targets in a variety of arrangements in a graphite irradiation wedge to optimize the production of 99Mo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.