Abstract

Using molecular dynamics simulations we have studied the structure of alkylsulfate-based ionic liquids: 1-ethyl-3-methylimidazolium n-alkylsulfate [C(2)C(1)im][C(n)SO(4)] (n = 2, 4, 6 and 8). The structure of the different ionic liquids have been interpreted taking into account radial and spatial distribution functions, and structure factors, that allowed us to characterize the morphology of the polar and nonpolar domains present in this family of liquids. The size of the nonpolar regions depends linearly on the anion alkyl chain length. Furthermore, properties of the surface of ionic liquids, such as surface tension, ordering, and charge and density profiles, were studied using molecular simulation. We were able to reproduce the experimental values of the surface tension with a maximum deviation of 10%, and it was possible to relate the values of the surface tension with the structure of the liquid-vacuum interfaces. Microscopic structural analysis of orientational ordering at the interface and density profiles along the direction normal to the interface suggest that the alkyl chains of the anions tend to protrude toward the vacuum, and the presence of the interface leads to a strong organization of the liquid phase in the region close to the interface, stronger when the side-chain length of the anions increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.