Abstract

Molecular-dynamics-derived numerical probability density functions (PDFs) have been used to illustrate the effect of different models for thermal motion on the parameters refined in a crystal structure determination. Specifically, anharmonic curved or asymmetric PDFs have been modelled using the traditional harmonic approximation and the anharmonic Gram-Charlier series treatment. The results show that in cases of extreme anharmonicity the mean and covariance matrix of the harmonic treatment can deviate significantly from physically meaningful values. The use of a Gram-Charlier anharmonic PDF gives means and covariance matrices closer to the true (numerically determined) anharmonic values. The physical significance of the maxima of the anharmonic distributions (the most probable or mode positions) is also discussed. As the data sets used for the modelling process are theoretical in origin, these most probable positions can be compared to equilibrium positions that represent the system at the bottom of its potential-energy surface. The two types of position differ significantly in some cases but the most probable position is still worthy of report in crystal structure determinations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.