Abstract

We provide a practical guide for using molecular dynamics simulation to compute the binding affinity of small molecules in complex with G-quadruplex DNA. Such calculations have a number of applications, such as rescoring docking results and validating docked poses, to inform the discovery of G-quadruplex binders with high affinity and selectivity. This chapter describes two binding free energy protocols: the double decoupling method (DDM) and the potential of mean force method (PMF). We illustrate the application of the two methods using a recent case study of the binding of quindoline with the c-MYC G-quadruplex DNA. For this system, the two methods yield absolute binding free energies within ~2kcal/mol of the experimental value. We discuss the advantages and disadvantages of these binding free energy methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.