Abstract

BackgroundZoonotic infections, which transmit from animals to humans, form the majority of new human pathogens. Following zoonotic transmission, the pathogen may already have, or may acquire, the ability to transmit from human to human. With infections such as Lassa fever (LF), an often fatal, rodent-borne, hemorrhagic fever common in areas of West Africa, rodent-to-rodent, rodent-to-human, human-to-human and even human-to-rodent transmission patterns are possible. Indeed, large hospital-related outbreaks have been reported. Estimating the proportion of transmission due to human-to-human routes and related patterns (e.g. existence of super-spreaders), in these scenarios is challenging, but essential for planned interventions.Methodology/Principal FindingsHere, we make use of an innovative modeling approach to analyze data from published outbreaks and the number of LF hospitalized patients to Kenema Government Hospital in Sierra Leone to estimate the likely contribution of human-to-human transmission. The analyses show that almost of the cases at KGH are secondary cases arising from human-to-human transmission. However, we found much of this transmission is associated with a disproportionally large impact of a few individuals (‘super-spreaders’), as we found only of human cases result in an effective reproduction number (i.e. the average number of secondary cases per infectious case) , with a maximum value up to .Conclusions/SignificanceThis work explains the discrepancy between the sizes of reported LF outbreaks and a clinical perception that human-to-human transmission is low. Future assessment of risks of LF and infection control guidelines should take into account the potentially large impact of super-spreaders in human-to-human transmission. Our work highlights several neglected topics in LF research, the occurrence and nature of super-spreading events and aspects of social behavior in transmission and detection.

Highlights

  • Diseases at the animal-human interface are in general subjected to different modes of cross-species transmission: animal-to-animal, animal-to-human, human-to-human and even human-to-animal

  • Lassa fever virus is an important example; this virus infects a species of rodent in West Africa, and can cause a severe disease in people

  • We focus on the risk for humans; undoubtedly, most human infections are acquired by contact with rodents or their urine, but the relative risk of rodent-to-human and human-to-human transmission is unknown

Read more

Summary

Introduction

Diseases at the animal-human interface are in general subjected to different modes of cross-species transmission: animal-to-animal, animal-to-human, human-to-human and even human-to-animal. Estimating the relative contribution of each is of fundamental importance for the planning and implementation of appropriate infection control and preventive measures This can be an extremely difficult task if humans and animals share the same physical space, and/or if experimentation (e.g. to quantify the probability of animal-to-animal transmission) is subjected to serious limitations. This is the case of Lassa fever (LF), a rodentborne disease endemic in West Africa. The pathogen may already have, or may acquire, the ability to transmit from human to human With infections such as Lassa fever (LF), an often fatal, rodent-borne, hemorrhagic fever common in areas of West Africa, rodent-to-rodent, rodent-to-human, human-to-human and even human-to-rodent transmission patterns are possible. Estimating the proportion of transmission due to human-tohuman routes and related patterns (e.g. existence of super-spreaders), in these scenarios is challenging, but essential for planned interventions

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.