Abstract

Updating road markings is one of the routine tasks of transportation agencies. Compared with traditional road inventory mapping techniques, vehicle-borne mobile light detection and ranging (LiDAR) systems can undertake the job safely and efficiently. However, current hurdles include software and computing challenges when handling huge volumes of highly dense and irregularly distributed 3-D mobile LiDAR point clouds. This paper presents the development and implementation aspects of an automated object extraction strategy for rapid and accurate road marking inventory. The proposed road marking extraction method is based on 2-D georeferenced feature (GRF) images, which are interpolated from 3-D road surface points through a modified inverse distance weighted (IDW) interpolation. Weighted neighboring difference histogram (WNDH)-based dynamic thresholding and multiscale tensor voting (MSTV) are proposed to segment and extract road markings from the noisy corrupted GRF images. The results obtained using 3-D point clouds acquired by a RIEGL VMX-450 mobile LiDAR system in a subtropical urban environment are encouraging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.