Abstract

In several pattern recognition problems, particularly in image recognition ones, there are often a large number of features available, but the number of training examples for each pattern is significantly less than the dimension of the feature space. This statement implies that the sample group covariance matrices often used in the Gaussian maximum probability classifier are singular. A common solution to this problem is to assume that all groups have equal covariance matrices and to use as their estimates the pooled covariance matrix calculated from the whole training set. This paper uses an alternative estimate for the sample group covariance matrices, here called the mixture covariance, given by an appropriate linear combination of the sample group and pooled covariance matrices. Experiments were carried out to evaluate the performance of this method in two biometric classification applications: face and facial expression. The average recognition rates obtained by using the mixture covariance matrices were higher than the usual estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.