Abstract

Mixed gases are used for massive gas injection disruption mitigation on Alcator C-Mod in order to optimize radiation efficiency, halo current reduction and response time. Gas mixtures of helium and argon (argon fraction 0–50%) are investigated in detail, as well as mixtures of deuterium, argon, krypton and helium. Experiments show that injecting He/Ar mixtures leads to faster thermal and current quenches than with pure helium or argon injection, thus improving the time response of the disruption mitigation system and reducing the halo current. Small fractions of argon (∼5–10%) in helium also lead to optimized radiation fractions with large electron density increases in the core plasma. These results are consistent with the expectation that small fractions of argon will be entrained with the faster helium in the early phases of gas flow. The gas mixing allows one to simultaneously exploit the fast particle delivery rate of light helium gas and the large radiation capability of argon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.