Abstract

BackgroundContrast agents (CA) are administered in magnetic resonance imaging (MRI) clinical exams to measure tissue perfusion, enhance image contrast between adjacent tissues, or provide additional biochemical information in molecular MRI. The efficacy of a CA is determined by the tissue distribution of the agent and its concentration in the extracellular space of all tissues. MethodsIn this work, micro-synchrotron radiation x-ray fluorescence (µ-SRXRF) was used to examine and characterize a gadolinium-based zinc-sensitive agent (GdL2) currently under development for detection of prostate cancer (PCa) by MRI. Prostate tissue samples were collected from control mice and mice with known PCa after an MRI exam that included injection of GdL2. The samples were raster scanned to investigate trends in Zn, Gd, Cu, Fe, S, P, and Ca. ResultsSignificant Zn and Gd co-localization was observed in both healthy and malignant tissues. In addition, a marked decrease in Zn was found in the lateral lobe of the prostate obtained from mice with PCa. ConclusionWe demonstrate here that µ-SRXRF is a useful tool for monitoring the distribution of several elements including Zn and Gd in animal models of cancer. The optimized procedures for tissue preparation, processing, data collection, and analysis are described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call