Abstract

Computer-aided design (CAD) of sporting equipment requires knowledge of the mechanical properties of proposed materials. The mechanical properties of composite materials are often not as simple to obtain as those of conventional materials, in which case micro-mechanical modelling could be used in conjunction with CAD software. A micro-mechanical model was used to predict the flexural modulus of composite materials, based on the assumption of partial interfacial adhesion between composite components. It was found that the partial adhesion model was both practical and consistently accurate. The partial adhesion model accounted for adhesion between components by considering an ‘effective shear value’ at the interface. The model was compared to experimental data for glass, wood and carbon-fibre reinforced polyethylene. It was shown that the adhesion coefficient ranged between 0.1 for carbon fibre, 0.5 for glass fibre and 0.8 for the wood fibre composites. It was shown that using micro-mechanical modelling to predict composite mechanical properties, as opposed to simulating the comprehensive composites structure, computer processing time and file size can be reduced with little compromise in simulation accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.