Abstract

Ionic liquids have found uses in many applications, one of which is the joint solvation and catalysis of chemical transformations. Suitable Brønsted acidic ionic liquids can be formed by combining lactams with sulphonic acids. This work weighs up the relative benefits and disadvantages of applying these Brønsted acidic ionic liquid catalysts in esterifications through a series of comparisons using green chemistry metrics. A new bio-based ionic liquid was synthesised from N-methyl pyrrolidinone and p-cymenesulphonic acid, and tested as a catalyst in three Fischer esterifications under different conditions. An evaluation of the performance of this Brønsted acidic ionic liquid was made through the comparison to other ionic liquid catalysts as well as conventional homogeneous Brønsted acids. Extending the argument to feedstock security as well as mass utilisation, ultimately in most instances traditional mineral acids appear to be the most sensible option for Brønsted acid esterification catalysts. Ester yields obtained from Brønsted acidic ionic liquid catalysed procedures were modest. This calls into question the diversity of research exploring esterification catalysis and the role of ionic liquids in esterifications.

Highlights

  • Ionic liquids have found uses in many applications, one of which is the joint solvation and catalysis of chemical transformations

  • A crucial advantage of Brønsted acidic ionic liquids as esterification catalysts is that after a reaction performed at room temperature, an organic phase consisting of the ester product is often found to separate from the ionic liquid phase (Table 2)

  • Brønsted acidic ionic liquids were created from the reaction between N-methyl pyrrolidine (NMP) and Brønsted acids according to the literature protocol [10]

Read more

Summary

Results

A new bio-based ionic liquid was synthesised from N-methyl pyrrolidinone and p-cymenesulphonic acid, and tested as a catalyst in three Fischer esterifications under different conditions. An evaluation of the performance of this Brønsted acidic ionic liquid was made through the comparison to other ionic liquid catalysts as well as conventional homogeneous Brønsted acids

Conclusion
Background
Results and discussion
Conclusions
22. Gunaseelan VN
26. Linder O
30. Spica P
47. McKenzie BF

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.