Abstract

An individual diagnostic accuracy study rarely provides enough information to make conclusive recommendations about the accuracy of a diagnostic test; particularly when the study is small. Meta-analysis methods provide a way of combining information from multiple studies, reducing uncertainty in the result and hopefully providing substantial evidence to underpin reliable clinical decision-making. Very few investigators consider any sample size calculations when designing a new diagnostic accuracy study. However, it is important to consider the number of subjects in a new study in order to achieve a precise measure of accuracy. Sutton et al. have suggested previously that when designing a new therapeutic trial, it could be more beneficial to consider the power of the updated meta-analysis including the new trial rather than of the new trial itself. The methodology involves simulating new studies for a range of sample sizes and estimating the power of the updated meta-analysis with each new study added. Plotting the power values against the range of sample sizes allows the clinician to make an informed decision about the sample size of a new trial. This paper extends this approach from the trial setting and applies it to diagnostic accuracy studies. Several meta-analytic models are considered including bivariate random effects meta-analysis that models the correlation between sensitivity and specificity. Copyright © 2012 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call