Abstract

Reverberation in low-frequency active sonar systems operating in shallow water has often been observed to follow non-Rayleigh statistical distributions. McDaniel's model, generalized to allow noninteger valued parameters, has shown promise as being capable of accurately representing real data with a minimal parameterization. This paper first derives an exact analytical expression for the cumulative distribution function (CDF) of the generalized McDaniel model and then compares it with numerical inversion of the characteristic function. Both methods are seen to provide adequate and equivalent precision; however the characteristic function inversion method is significantly faster. The latter CDF evaluation technique is then applied to the analysis of simulated and real data to show that, when minimal data are available, McDaniel's model can more accurately represent a wide variety of non-Rayleigh reverberation than the K or Rayleigh mixture models. This result arises from the generality of McDaniel's model with respect to the K-distribution (i.e., the K-distribution P/sub fa/ estimate can be dominated by model mismatch error) and to its compact parameterization with respect to the Rayleigh mixture (i.e., the Rayleigh mixture model P/sub fa/ estimate is usually dominated by parameter estimation error).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.