Abstract

Purpose:Treatment-resistant cluster headache can be successfully alleviated with deep brain stimulation (DBS) of the posterior hypothalamus [1]. Magnetoencephalography (MEG) is a non-invasive functional imaging technique with both high temporal and high spatial resolution. However, it is not known whether the inherent electromagnetic (EM) noise produced by high frequency DBS is compatible with MEG.Materials and methods:We used MEG to record brain activity in an asymptomatic cluster headache patient with a DBS implanted in the right posterior hypothalamus while he made small movements during periods of no stimulation, 7 Hz stimulation and 180 Hz stimulation.Results:We were able to measure brain activity successfully both during low and high frequency stimulation. Analysis of the MEG recordings showed similar activation in motor areas in during the patient’s movements as expected. We also observed similar activations in cortical and subcortical areas that have previously been reported to be associated with pain when the patient’s stimulator was turned on or off [2,3].Conclusion:These results show that MEG can be used to measure brain activity regardless of the presence of high frequency deep brain stimulation.

Highlights

  • Intensity modulated radiotherapy (IMRT) utilises small beamlets of ionising radiation to provide a highKhamfongkhruea et al Biomed Imaging Interv J 2012; 8(1):e5This page number is not for citation purposes use a respiratory gating system

  • The measurements by MapCheck show the gamma index of the planned absolute dose distribution in static and moving targets with gating, resulting in more than 96% passing for all dose rates

  • The absolute dose distribution measured by film for the static target was agreeable with the value of moving target with gating

Read more

Summary

Introduction

Intensity modulated radiotherapy (IMRT) utilises small beamlets of ionising radiation to provide a highKhamfongkhruea et al Biomed Imaging Interv J 2012; 8(1):e5This page number is not for citation purposes use a respiratory gating system. Chen et al [5] studied the dosimetric effects caused by the respiratory motion during IMRT by using Kodak EDR2 films. They concluded that, without the gating system, the dose distribution of the stationary phantom was different from the moving one. Duan et al [7] studied the dosimetric effect of respiration-gated beam with IMRT delivery Their results suggested that low dose rate can reduce the effect of delay and catch-up cycle. Lin et al [2] determined the effect of radiation dose rate with moving target and the gated treatment using step-and-shoot IMRT delivery. The high dose rate gated stepand-shoot IMRT was dosimetrically accurate, shortened the delivery time, and was safe to use clinically

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.