Abstract

To predict the risk of hypoglycaemia using machine-learning techniques in hospitalized patients. We conducted a retrospective cohort study of patients hospitalized under general internal medicine (GIM) and cardiovascular surgery (CV) at a tertiary care teaching hospital in Toronto, Ontario. Three models were generated using supervised machine learning: least absolute shrinkage and selection operator (LASSO) logistic regression; gradient-boosted trees; and a recurrent neural network. Each model included baseline patient data and time-varying data. Natural-language processing was used to incorporate text data from physician and nursing notes. We included 8492 GIM admissions and 8044 CV admissions. Hypoglycaemia occurred in 16% of GIM admissions and 13% of CV admissions. The area under the curve for the models in the held-out validation set was approximately 0.80 on the GIM ward and 0.82 on the CV ward. When the threshold for hypoglycaemia was lowered to 2.9 mmol/L (52 mg/dL), similar results were observed. Among the patients at the highest decile of risk, the positive predictive value was approximately 50% and the sensitivity was 99%. Machine-learning approaches can accurately identify patients at high risk of hypoglycaemia in hospital. Future work will involve evaluating whether implementing this model with targeted clinical interventions can improve clinical outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.