Abstract

AbstractLightning‐caused wildfires are a significant contributor to burned areas, with lightning ignitions remaining one of the most unpredictable aspects of the fire environment. There is a clear connection between fuel moisture and the probability of ignition; however, the mechanisms are poorly understood and predictive methods are underdeveloped. Establishing a lightning–ignition relationship would be useful in developing a model that would complement early warning systems designed for fire control and prevention. A machine learning (ML) approach was used to define a predictive model for wildfire ignition based on lightning forecasts and environmental conditions. Three different binary classifiers were adopted: a decision tree, an AdaBoost and a Random Forest, showing promising results, with both ensemble methods (Random Forest and AdaBoost) exhibiting an out‐of‐sample accuracy of 78%. Data provided by a Western Australia wildfire database allowed a comprehensive verification on over 145 lightning‐ignited wildfires in regions of Australia during 2016. This highlighted that in a minimum of 71% of the cases the ML models correctly predicted the occurrence of an ignition when a fire was actually initiated. The super‐learner developed is planned to be used in an operational context to the enhance information connected to fire management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.