Abstract

Abstract Objective To investigate the predictive performance of machine learning (ML) algorithms for estimating anticoagulation control in patients with atrial fibrillation (AF) who are treated with warfarin. Methods This was a retrospective cohort study of adult patients (≥18 years) between 2007 and 2016 using linked primary and secondary care data (Clinical Practice Research Datalink GOLD and Hospital Episode Statistics). Various ML techniques were explored to predict suboptimal anticoagulation control, defined as time in therapeutic range (TTR) Results 35,479 patients were eligible for inclusion, of whom 24,684 and 10,795 were assigned to the training (32,683 unique LOTs) and holdout sets (14,218 unique LOTs). Across all models, depression (diagnosis and/or prescription of antidepressant medication) was a significant driver in predicting anticoagulation control. At baseline, XGBoost was the best-performing model (area under the curve [AUC]: 0.624) due to its ability to identify non-linear associations such as age and weight (greater probability of suboptimal control: 80 years and Conclusion ML algorithms displayed clinically useful ability to predict patients who are at greater risk of suboptimal control. The addition of time-varying data to the algorithm, especially prior INR measurements, improved predictive performance. These algorithms provide improved predictive tools for identifying patients who may benefit from more frequent INR monitoring or switching to alternative therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call