Abstract
Stream-based parallel languages are a popular way to express parallelism in modern applications. The efficient mapping of streaming parallelism to today's multicore systems is, however, highly dependent on the program and underlying architecture. We address this by developing a portable and automatic compiler-based approach to partitioning streaming programs using machine learning. Our technique predicts the ideal partition structure for a given streaming application using prior knowledge learned offline. Using the predictor we rapidly search the program space (without executing any code) to generate and select a good partition. We applied this technique to standard StreamIt applications and compared against existing approaches. On a 4-core platform, our approach achieves 60% of the best performance found by iteratively compiling and executing over 3000 different partitions per program. We obtain, on average, a 1.90× speedup over the already tuned partitioning scheme of the StreamIt compiler. When compared against a state-of-the-art analytical, model-based approach, we achieve, on average, a 1.77× performance improvement. By porting our approach to an 8-core platform, we are able to obtain 1.8× improvement over the StreamIt default scheme, demonstrating the portability of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Architecture and Code Optimization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.