Abstract
PurposeThe purpose of the present work is to demonstrate the application of machine learning (ML) techniques to automatically identify the presence and physiologic phase of intravenous (IV) contrast in Computed Tomography (CT) scans of the Chest, Abdomen and Pelvis. Materials and MethodsTraining, testing and validation data were acquired from a dataset of 82,690 chest and abdomen CT examinations performed at 17 different institutions. Free text in DICOM metadata was utilized as weak labels for semi-supervised classification training. Contrast phase identification was approached as a classification task, using a 12-layer CNN and ResNet18 with four contrast-phase output. The model was reformulated to fit a regression task aimed to predict actual seconds from time of IV contrast administration to series image acquisition. Finally, transfer learning was used to optimize the model to predict contrast presence on CT Chest. ResultsBy training based on labels inferred from noisy, free text DICOM information, contrast phase was predicted with 93.3% test accuracy (95% CI: 89.3%, 96.6%) . Regression analysis resulted in delineation of early vs late arterial phases and a nephrogenic phase in between the portal venous and delayed excretory phase. Transfer learning applied to Chest CT achieved an AUROC of 0.776 (95% CI: 0.721, 0.832) directly using the model trained for abdomen CT and 0.999 (95% CI: 0.998, 1.000) by fine-tuning. ConclusionsThe presence and phase of contrast on CT examinations of the Abdomen-pelvis accurately and automatically be ascertained by a machine learning algorithm. Transfer learning applied to CT Chest achieves high precision with as little as 100 labeled samples.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.