Abstract

A sample with a blood clot may produce an inaccurate outcome in coagulation testing, which may mislead clinicians into making improper clinical decisions. Currently, there is no efficient method to automatically detect clots. This study demonstrates the feasibility of utilizing machine learning (ML) to identify clotted specimens. The results of coagulation testing with 192 clotted samples and 2,889 no-clot-detected (NCD) samples were retrospectively retrieved from a laboratory information system to form the training dataset and testing dataset. Standard and momentum backpropagation neural networks (BPNNs) were trained and validated using the training dataset with a five-fold cross-validation method. The predictive performances of the models were then assessed based on the testing dataset. Our results demonstrated that there were intrinsic distinctions between the clotted and NCD specimens regarding differences in the testing results and the separation of the groups (clotted and NCD) in the t-SNE analysis. The standard and momentum BPNNs could identify the sample status (clotted and NCD) with areas under the ROC curves of 0.966 (95% CI, 0.958-0.974) and 0.971 (95% CI, 0.9641-0.9784), respectively. Here, we have described the application of ML algorithms in identifying the sample status based on the results of coagulation testing. This approach provides a proof-of-concept application of ML algorithms to evaluate the sample quality, and it has the potential to facilitate clinical laboratory automation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call