Abstract
We investigate the use of machine learning in combination with feature engineering techniques to explore human multimodal clarification strategies and the use of those strategies for dialogue systems. We learn from data collected in a Wizard-of-Oz study where different wizards could decide whether to ask a clarification request in a multimodal manner or else use speech alone. We show that there is a uniform strategy across wizards which is based on multiple features in the context. These are generic runtime features which can be implemented in dialogue systems. Our prediction models achieve a weighted f-score of 85.3% (which is a 25.5% improvement over a one-rule baseline). To assess the effects of models, feature discretisation, and selection, we also conduct a regression analysis. We then interpret and discuss the use of the learnt strategy for dialogue systems. Throughout the investigation we discuss the issues arising from using small initial Wizard-of-Oz data sets, and we show that feature engineering is an essential step when learning from such limited data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.