Abstract

Using a machine-learning model, we examined drivers of antibiotic prescribing for antibiotic-inappropriate acute respiratory illnesses in a large US claims data set. Antibiotics were prescribed in 11% of the 42 million visits in our sample. The model identified outpatient setting type, patient age mix, and state as top drivers of prescribing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.