Abstract

BackgroundInvestigations into person-specific predictors of stress have typically taken either a population-level nomothetic approach or an individualized ideographic approach. Nomothetic approaches can quickly identify predictors but can be hindered by the heterogeneity of these predictors across individuals and time. Ideographic approaches may result in more predictive models at the individual level but require a longer period of data collection to identify robust predictors.ObjectiveOur objectives were to compare predictors of stress identified through nomothetic and ideographic models and to assess whether sequentially combining nomothetic and ideographic models could yield more accurate and actionable predictions of stress than relying on either model. At the same time, we sought to maintain the interpretability necessary to retrieve individual predictors of stress despite using nomothetic models.MethodsData collected in a 1-year observational study of 79 participants performing low levels of exercise were used. Physical activity was continuously and objectively monitored by actigraphy. Perceived stress was recorded by participants via daily ecological momentary assessments on a mobile app. Environmental variables including daylight time, temperature, and precipitation were retrieved from the public archives. Using these environmental, actigraphy, and mobile assessment data, we built machine learning models to predict individual stress ratings using linear, decision tree, and neural network techniques employing nomothetic and ideographic approaches. The accuracy of the approaches for predicting individual stress ratings was compared based on classification errors.ResultsAcross the group of patients, an individual’s recent history of stress ratings was most heavily weighted in predicting a future stress rating in the nomothetic recurrent neural network model, whereas environmental factors such as temperature and daylight, as well as duration and frequency of bouts of exercise, were more heavily weighted in the ideographic models. The nomothetic recurrent neural network model was the highest performing nomothetic model and yielded 72% accuracy for an 80%/20% train/test split. Using the same 80/20 split, the ideographic models yielded 75% accuracy. However, restricting ideographic models to participants with more than 50 valid days in the training set, with the same 80/20 split, yielded 85% accuracy.ConclusionsWe conclude that for some applications, nomothetic models may be useful for yielding higher initial performance while still surfacing personalized predictors of stress, before switching to ideographic models upon sufficient data collection.

Highlights

  • Deeper knowledge of the day-to-day effects of both weather and physical activity on stress can be valuable for creating personalized stress-reduction interventions on a just-in-time basis

  • We explored the accuracy of a model-switching paradigm that begins with a nomothetic model and progressively changes to an ideographic model for data for the individual accumulate

  • Through the combination of a nomothetic neural network model, recent advances in retrieving per-sample feature importance, and ideographic decision trees, we show that high predictive performance can be achieved while recognizing individual differences and surfacing personalized predictors of stress

Read more

Summary

Introduction

Deeper knowledge of the day-to-day effects of both weather and physical activity on stress can be valuable for creating personalized stress-reduction interventions on a just-in-time basis. Previous investigations have often focused on a nomothetic approach, pooling data to identify influential features across individuals [1,2]. This approach typically has a drawback: Insight into any particular individual is limited due to heterogeneous effects of factors on individual-level stress and may not be generalized due to biological variability or overfitting [3]. Investigations into person-specific predictors of stress have typically taken either a population-level nomothetic approach or an individualized ideographic approach. Ideographic approaches may result in more predictive models at the individual level but require a longer period of data collection to identify robust predictors

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.