Abstract

The reduction of childhood mortality is an ongoing struggle and a commonly used factor in determining progress in the medical field. The under-5 mortality number is around 5 million around the world, with many of the deaths being preventable. In light of this issue, cardiotocograms (CTGs) have emerged as a leading tool to determine fetal health. By using ultrasound pulses and reading the responses, CTGs help healthcare professionals assess the overall health of the fetus to determine the risk of child mortality. However, interpreting the results of the CTGs is time consuming and inefficient, especially in underdeveloped areas where an expert obstetrician is hard to come by. Using a support vector machine (SVM) and oversampling, this paper proposes a model that classifies fetal health with an accuracy of 99.59%. To further explain the CTG measurements, an algorithm based off of RISE (Randomized Input Sampling for Explanation of Black-box Models) was created, called Feature Alteration for explanation of Black Box Models (FAB). The findings of this novel algorithm were compared to SHapley Additive exPlanations (SHAP) and Local Interpretable Model Agnostic Explanations (LIME). Overall, this technology allows doctors and medical professionals to classify fetal health with high accuracy and determine which features were most influential in the process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call