Abstract

In the United Kingdom, despite decades of control efforts, bovine tuberculosis (bTB) has not been controlled and currently costs ~ £100 m annually. Critical in the failure of control efforts has been the lack of a sufficiently sensitive diagnostic test. Here we use machine learning (ML) to predict herd-level bTB breakdowns in Great Britain (GB) with the aim of improving herd-level diagnostic sensitivity. The results of routinely-collected herd-level tests were correlated with risk factor data. Four ML methods were independently trained with data from 2012–2014 including ~ 4700 positive herd-level test results annually. The best model’s performance was compared to the observed sensitivity and specificity of the herd-level test calculated on the 2015 data resulting in an increased herd-level sensitivity from 61.3 to 67.6% (95% confidence interval (CI): 66.4–68.8%) and herd-level specificity from 90.5 to 92.3% (95% CI: 91.6–93.1%). This approach can improve predictive capability for herd-level bTB and support disease control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.