Abstract

The prediction of the phase formation of high entropy alloys (HEAs) has attracted great research interest recent years due to their superior structure and mechanical properties of single phase. However, the identification of these single phase solid solution alloys is still a challenge. Previous studies mainly focus on trial-and-error experiments or thermodynamic criteria, the previous is time consuming while the latter depends on the descriptors quality, both provide unreliable prediction. In this study, we attempted to predict the phase formation based on feature engineering and machine learning (ML) with a small dataset. The descriptor dimensionality is augmented from original small dimension to high dimension by non-linear combinations to characterize HEAs. The results showed that this method could achieve higher accuracy in predicting the phase formation of HEAs than traditional methods. Except the prediction of HEAs, this method also can be applied to other materials with limited dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.