Abstract
Due to the International Thermonuclear Experimental Reactor (ITER) radiative environment, in particular during high D-T power phase, classic x-ray detectors, such as semiconductor diodes, might be too fragile and are thus not viable. Instead, robust detectors, such as gas-filled detectors, are nowadays considered. The Low Voltage Ionization Chamber (LVIC) is one of the most promising candidates for x-ray measurement during the ITER nuclear phase. A complete model of the detector, recently developed at IRFM (Intitute for Research on Magnetic Fusion), now requires experimental validation. Experimental testing at the IRFM laboratory of an ITER industrial LVIC prototype and comparison with modeling are presented. In particular, an original approach to extract information on the x-ray spectrum from current-mode LVIC measurement is validated experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.