Abstract
People spend most of their time in indoor environments without knowing about the air quality in these spaces. In this study, indoor low-cost sensors were used (for 5 months) to assess the comfort and air quality patterns in two indoor households. To strengthen the robustness of the considered approach and build confidence in the obtained comfort and indoor air quality (IAQ) levels, the sensor measurements were also compared against information from reference monitoring equipment; in which, high correlation coefficients were obtained (> 0.85) and also low errors (on average 22%). The IAQ results were strongly influenced by the residents' activity and behaviour, the outdoor weather conditions, and indoor/outdoor air pollution sources. Overall, the recommended values of temperature and relative humidity for the occupant's comfort in indoor environments were not fulfilled. The highest particulate matter (PM) levels were recorded at the weekend (on average +14% higher), while maximum CO2 and CO levels were obtained on the weekdays (on average +9% higher). PM daily profiles followed the outdoor concentrations with the maximum levels at the end of the night and the lowest values in the early morning/mid-afternoon. The highest and lowest CO2 concentrations were registered in the early morning (< 1536 ppm) and mid-afternoon (< 627 ppm), respectively, while the CO daily profiles showed a high impact of outdoor emissions, with the minimum concentrations up to 0.81 mg m-3 (at 10 a.m. or 6 p.m.), and a maximum concentration of 1.87 mg m-3 (at 10 p.m.). Real-time comfort conditions and IAQ levels are a powerful approach to providing fast decisions to minimise human exposure and prevent negative health impacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.