Abstract

Emergency Department (ED) overcrowding is a major global healthcare issue. Many research studies have been conducted to predict ED wait time using various machine learning prediction models to enhance patient experience and improve care efficiency and resource allocation. In this paper, we used Long Short-Term Memory (LSTM) recurrent neural networks to build a model to predict ED wait time in the next 2 hours using a randomly generated patient timestamp dataset of a typical patient hospital journey. Compared with Linear Regression model, the average mean absolute error for the LSTM model is decreased by 9.7% (3 minutes) (p < 0.01). The LSTM model statistically outperforms the LR model, however, both models could be practically useful in ED wait time prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.