Abstract

We propose to use local labeling rules in random forests of decision trees for effectively classifying data. The decision rules use the majority vote for labeling at terminal-nodes in decision trees, maybe making the classical random forest algorithm degrade the classification performance. Our investigation aims at replacing the majority rules with the local ones, i.e. support vector machines to improve the prediction correctness of decision forests. The numerical test results on 8 datasets from UCI repository and 2 benchmarks of handwritten letters recognition showed that our proposal is more accurate than the classical random forest algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.