Abstract

The refinement of predicted 3D models aims to bring them closer to the native structure by fixing errors including unusual bonds and torsion angles and irregular hydrogen bonding patterns. Refinement approaches based on molecular dynamics (MD) simulations using different types of restraints have performed well since CASP10. ReFOLD, developed by the McGuffin group, was one of the many MD-based refinement approaches, which were tested in CASP 12. When the performance of the ReFOLD method in CASP12 was evaluated, it was observed that ReFOLD suffered from the absence of a reliable guidance mechanism to reach consistent improvement for the quality of predicted 3D models, particularly in the case of template-based modelling (TBM) targets. Therefore, here we propose to utilize the local quality assessment score produced by ModFOLD6 to guide the MD-based refinement approach to further increase the accuracy of the predicted 3D models. The relative performance of the new local quality assessment guided MD-based refinement protocol and the original MD-based protocol ReFOLD are compared utilizing many different official scoring methods. By using the per-residue accuracy (or local quality) score to guide the refinement process, we are able to prevent the refined models from undesired structural deviations, thereby leading to more consistent improvements. This chapter will include a detailed analysis of the performance of the local quality assessment guided MD-based protocol versus that deployed in the original ReFOLD method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call