Abstract
Herein, we propose a data-driven test that assesses the lack of fit of nonlinear regression models. The comparison of local linear kernel and parametric fits is the basis of this test, and specific boundary-corrected kernels are not needed at the boundary when local linear fitting is used. Under the parametric null model, the asymptotically optimal bandwidth can be used for bandwidth selection. This selection method leads to the data-driven test that has a limiting normal distribution under the null hypothesis and is consistent against any fixed alternative. The finite-sample property of the proposed data-driven test is illustrated, and the power of the test is compared with that of some existing tests via simulation studies. We illustrate the practicality of the proposed test by using two data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.