Abstract

BackgroundFrom a stewardship perspective it is recommended that antibiotic guidelines are adjusted to the local setting, accounting for the local epidemiology of pathogens. In many settings the prevalence of Gram-negative pathogens with resistance to empiric sepsis therapy is increasing. How and when to escalate standard sepsis therapy to a reserve antimicrobial agent, is a recurrent dilemma. The study objective was to develop decision strategies for empiric sepsis therapy based on local microbiological and clinical data, and estimate the number needed to treat with a carbapenem to avoid mismatch of empiric therapy in one patient (NNTC).MethodsWe performed a nested case control study in patients (> 18 years) with Gram-negative bacteremia in 2013–2016. Cases were defined as patients with Gram-negative bacteremia with in vitro resistance to the combination 2nd generation cephalosporin AND aminoglycoside (C-2GC + AG). Control patients had Gram-negative bacteremia with in vitro susceptibility to cefuroxime AND/OR gentamicin, 1:2 ratio. Univariate and multivariable analysis was performed for demographic and clinical predictors of resistance. The adequacy rates of empiric therapy and the NNTC were estimated for different strategies.ResultsThe cohort consisted of 486 episodes of Gram-negative bacteremia in 450 patients. Median age was 66 years (IQR 56–74). In vitro resistance to C-2GC + AG was present in 44 patients (8.8%). Independent predictors for resistance to empiric sepsis therapy were hematologic malignancy (adjusted OR 4.09, 95%CI 1.43–11.62, p < 0.01), previously cultured drug resistant pathogen (adjusted OR 3.72. 95%CI 1.72–8.03, p < 0.01) and antibiotic therapy during the preceding 2 months (adjusted OR 12.5 4.08–38.48, p < 0.01). With risk-based strategies, an adequacy rate of empiric therapy of 95.2–99.3% could be achieved. Compared to treating all patients with a carbapenem, the NNTC could be reduced by 82.8% (95%CI 78.5–87.5%) using the targeted approaches.ConclusionsA risk-based approach in empiric sepsis therapy has the potential to better target the use of reserve antimicrobial agents aimed at multi-resistant Gram-negative pathogens. A structured evaluation of the expected antimicrobial consumption and antibiotic adequacy rates is essential to be able to weigh the costs and benefits of potential antibiotic strategies and select the most appropriate approach.

Highlights

  • Current guidelines on antibiotic stewardship recommend to adapt empiric therapy to local microbiological data [1]

  • The importance of prompt initiation of effective empiric therapy in this patient category is well recognized [10,11,12,13,14], and the antibiotic consumption associated with empiric treatment for sepsis is substantial [15, 16]

  • The effect of different targeted empiric therapy approaches on the proportion of patients that receive adequate empiric treatment and the number of patients needed to treat with a carbapenem to avoid mismatch of empiric therapy in one patient (NNTC), were estimated applying the case control study (2013–2016) and the cohort data (2013–2014)

Read more

Summary

Introduction

Current guidelines on antibiotic stewardship recommend to adapt empiric therapy to local microbiological data [1]. The empiric strategy may need to be broadened to guarantee coverage of the most common pathogens The downside of this action is an increase in selective pressure, driving further emergence of resistance [2]. If patients with a high probability of infection with a resistant pathogen can be identified upfront, empiric therapy can be escalated selectively [6, 7]. This approach combines the two major aims of antibiotic stewardship: promoting effective antimicrobial therapy in all patients, while limiting antibiotic usage where possible [8]. The study objective was to develop decision strategies for empiric sepsis therapy based on local microbiological and clinical data, and estimate the number needed to treat with a carbapenem to avoid mismatch of empiric therapy in one patient (NNTC)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call