Abstract

Single-cell RNA sequencing (scRNA-seq) technology has significantly advanced our understanding of the diversity of cells and how this diversity is implicated in diseases. Yet, translating these findings across various scRNA-seq datasets poses challenges due to technical variability and dataset-specific biases. To overcome this, we present a novel approach that employs both an LLM-based framework and explainable machine learning to facilitate generalization across single-cell datasets and identify gene signatures to capture disease-driven transcriptional changes. Our approach uses scBERT, which harnesses shared transcriptomic features among cell types to establish consistent cell-type annotations across multiple scRNA-seq datasets. Additionally, we employed a symbolic regression algorithm to pinpoint highly relevant, yet minimally redundant models and features for inferring a cell type's disease state based on its transcriptomic profile. We ascertained the versatility of these cell-specific gene signatures across datasets, showcasing their resilience as molecular markers to pinpoint and characterize disease-associated cell types. The validation was carried out using four publicly available scRNA-seq datasets from both healthy individuals and those suffering from ulcerative colitis (UC). This demonstrates our approach's efficacy in bridging disparities specific to different datasets, fostering comparative analyses. Notably, the simplicity and symbolic nature of the retrieved gene signatures facilitate their interpretability, allowing us to elucidate underlying molecular disease mechanisms using these models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call