Abstract

In recent years, chemically modified messenger RNA (mRNA) has emerged as a potent nucleic acid molecule for developing a wide range of therapeutic applications, including a novel class of vaccines, protein replacement therapies, and immune therapies. Among delivery vectors, lipid nanoparticles are found to be safer and more effective in delivering RNA molecules (e.g., siRNA, miRNA, mRNA) and a few products are already in clinical use. To demonstrate lipid nanoparticle-mediated mRNA delivery, we present an optimized protocol for the synthesis of functional me1Ψ-UTP modified eGFP mRNA, the preparation of cationic liposomes, the electrostatic complex formation of mRNA with cationic liposomes, and the evaluation of transfection efficiencies in mammalian cells. The results demonstrate that these modifications efficiently improved the stability of mRNA when delivered with cationic liposomes and increased the eGFP mRNA translation efficiency and stability in mammalian cells. This protocol can be used to synthesize the desired mRNA and transfect with cationic liposomes for target gene expression in mammalian cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.