Abstract

ABSTRACT Excited state quenching is a key step in photochemical reactions that involve energy or electron transfer. High reaction quantum yields require sufficiently high concentrations of a quencher to ensure efficient quenching. The determination of quencher concentrations is typically done through trial and error. Using kinetic modeling, however, a simple relationship was developed that predicts the concentration of quencher necessary to quench 90% of excited states, using only the photosensitizer lifetime and the rate constant for quenching as inputs. Comparison of the predicted quencher concentrations and quencher concentrations used in photoredox reactions featuring acridinium-based photocatalysts reveals that the majority of reactions used quencher concentrations significantly below the predicted concentration. This suggests that these reactions exhibit low quantum yields, requiring long reaction times and/or intense light sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.