Abstract
The Helmholtz equation least-squares (HELS) method is a valuable tool for estimating equivalent sound sources of a radiating object. It solves an inverse problem by mapping measured pressures to a set of basis functions satisfying the Helmholtz equation in spherical coordinates. However, this problem is often ill-posed, necessitating additional regularization methods, in which often variations of Ridge or Lasso are used. These conventional methods do not explicitly consider the distribution underlying the source radiations (besides sparsity) and are often used in the context of obtaining only a point estimate, even in the presence of ambiguity in the data. In this work, we propose the use of empirical priors through a normalizing flow model to enhance the inversion results obtained with the HELS method. We first validate our approach using numerical data and subsequently demonstrate its superior performance in interpolating a measured violin directivity compared to Lasso and Ridge methods, even when optimal regularization parameters are selected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.